
HIERARCHICAL MODELS

• Consider the number of car accidents over 30 years by a driver (M) in Milano and
one (R) in Roma

• We can consider two persons, randomly selected or not, or the average of (a subset
of) the population in the two cities but then we round up to an integer

• The event is rare and takes only integer values ⇒ Poisson distribution

• X ∼ P(λ) → P(X = x) =
λx

x!
e−λ; x ∈ Z

• How should we model our data and prior for M and R?

• We should think if the behaviour of the two drivers is the same, completely different
or there are similarities

• How do we transform those situations into a statistical model?
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• nM and nR number of accidents for M and R

• λM and λR parameters for Poisson distribution for nM and nR

• Equal: If the two drivers are behaving in the same way, we model the data indepen-
dently but with a common λ, with gamma prior G(α, β)

– ⇒ π(λ|nM , nR) ∝ λnMe−λ · λnRe−λ · λα−1e−λβ

– ⇒ λ|nM , nR ∼ G(α+ nM + nR, β +2)

• Completely different: If the two drivers are behaving in a completely different way,
we model the data not only independently but also with different λ’s, and independent
gamma priors

– nM ∼ P(λM) and λM ∼ G(αM , βM) ⇒ λ|nM ∼ G(αM + nM , βM +1)

– nR ∼ P(λR) and λR ∼ G(αR, βR) ⇒ λ|nR ∼ G(αR + nR, βR +1)
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• Similar: If the two drivers are behaving in a similar way, we model the data indepen-
dently, with different λ’s, but drawn from the same exponential (for simplicity) prior,
dependent on a parameter θ

– ⇒ π(λM , λR|nM , nR, θ) ∝ λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθ

– ⇒ λM |nM , nR, θ ∼ G(nM +1, θ +1) and λR|nM , nR, θ ∼ G(nR +1, θ +1)

• Two independent gamma posteriors for known θ but what about if unknown?

• We could consider a gamma prior θ ∼ G(a, b)

• ⇒ π(λM , λR, θ|nM , nR) ∝ λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθ · θa−1e−bθ

• Gibbs sampling:

– λM |λR, θ, nM , nR ∼ G(θ + nM +1, θ +1)

– λR|λM , θ, nM , nR ∼ G(θ + nR +1, θ +1)

– θ|λM , λR, nM , nR ∼ G(a+2, b+ λM + λR)
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• We have to integrate out θ if we are just interested in the full conditionals of each λ
given the other

π(λM , λR|nM , nR) =

∫
π(λM , λR, θ|nM , nR)dθ

∝ λnM

M e−λMλnR

R e−λR

∫
θa+1e−(b+λM+λR)θdθ

∝
λnM

M e−λMλnR

R e−λR

(b+ λM + λR)a+2

• ⇒ We can use Gibbs sampling with Metropolis steps within

– π(λM |λR, nM , nR) ∝
λnM

M e−λM

(b+ λM + λR)a+2

– π(λR|λM , nM , nR) ∝
λnR

R e−λR

(b+ λM + λR)a+2

• As proposal distributions we could use G(nM +1,1) and G(nR+1,1), respectively
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• Empirical Bayes is a practical, although not properly Bayesian, alternative to the
choice of a prior on θ

• The idea is to find the value of θ maximising the probability of the data and plug it
into the formulas

• The critical aspect, from a strict Bayesian viewpoint, is that data are used twice, first
to find a value of θ and then computing the posterior distribution: priors should be
independent from the data!

• We have to look for θ̂ = argmaxθ f(nM , nR|θ)

• With the same computations as before for θ known, we plug in θ̂
⇒ λM |nM , nR, θ̂ ∼ G(nM +1, θ̂ +1) and λR|nM , nR, θ̂ ∼ G(nR +1, θ̂ +1)
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f(nM , nR|θ) =

∫
f(nM , nR|λM , λR)π(λM , λR|θ)dλMdλR

∝
∫

λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθdλMdλR

∝ θ2
∫

λnM

M e−(θ+1)λMdλM

∫
λnR

R e−(θ+1)λRdλR

∝ θ2
Γ(nM +1)

(θ +1)nM+1

Γ(nR +1)

(θ +1)nR+1

∝
θ2

(θ +1)nM+nR+2

= h(nM , nR, θ)

•
∂ logh(nM , nR, θ)

∂θ
=

2

θ
−

nM + nR +2

θ +1

•
∂ logh(nM , nR, θ)

∂θ
= 0 ⇔ θ̂ =

2

nM + nR
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• Is θ̂ = 2
nM+nR

surprising? Not much!

• We are considering an event described by a Poisson distribution with parameter λ

• For X ∼ P(λ) we know that E(X) = λ

• For λ ∼ E(θ) we know that E(λ) = 1/θ

• Since we use θ̂ = 2
nM+nR

, we can think of X somehow approximated (with some
mathematical imprecision) by nM+nR

2
, which is very reasonable under our assump-

tions
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• In Italy every year students in some grades are taking tests on their knowledge about
Italian language and Mathematics. The results of the tests could be affected by the
school attended by the students so that it is reasonable to assume that the outcome
for students of the same school are modelled by the same distribution while there
should be a difference between schools.

• The same model could be used for batches of the same item but produced in different
factories or survival times of patients in different hospitals

• We suppose that we observe data from n different groups, with ni, i = 1, . . . , n,
elements in each of them

• Therefore the data are Yiji, i = 1, . . . , n and ji = 1, . . . , ni, although we will use Yij

for simplicity

• Notation: Y i = {Yi1, . . . , Yi,ni
}, i = 1, . . . , n data for i-th group

• Hierarchical models related to the notion of exchangeability, i.e. P(X1, . . . , Xn) in-
variant w.r.t. permutations (but we will not discuss it)
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• Each group has its own distribution with a common parameter, i.e., the density of Yij

is f(yij|λi), i = 1, . . . , n, j = 1, . . . , ni

• This assumption implies a common behaviour within the group

• We assume that the functional form of f is not changing between groups (but it
could)

• All the parameters λi’s are supposed different (although sometimes some groups
might have the same parameter)

• This assumption implies that the behaviour changes between groups

• All λi’s come from the same distribution, i.e. g(λi|θ), where θ is a parameter in
common

• This assumption implies that the behaviour of the groups, although different, is actu-
ally similar

• As before, a prior could be chosen for θ or a value could be plugged in, using, e.g.,
Empirical Bayes
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• {yi1, . . . , yini
|λi} ∼ i.i.d. f(y|λi), i = 1, . . . , n

Within group sampling variability

• {λ1, . . . , λn} ∼ i.i.d. g(λ|θ)
Between groups sampling variability

• θ ∼ π(θ|ω)
Prior distribution with hyperparameter ω

• Sometimes both f(y|λi) and g(λ|θ) are called sampling distributions

• A popular model to describe heterogeneity of means across several populations is a
hierarchical Normal model where both sampling distributions are Gaussian
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• Observations in group j, j = 1, . . . ,m: Yji ∼ N (θj, σ2) (Within group variability)

• Mean of group j, j = 1, . . . ,m: θj ∼ N (µ, τ2) (Between groups variability)

• Independent priors on (µ, τ2, σ2) : π(µ)π(τ2)π(σ2)

– µ ∼ N (µ0, γ2
0)

– τ2 ∼ IG(η0/2, η0τ2
0/2)

– σ2 ∼ IG(ν/2, νσ2
0/2)

• Note that we assume the same variance for all the observations, while the mean is
the same within a group but it changes between groups

• As seen graphically in the next slide, (µ, τ2) provide information on Y ’s but, once θ
is known, the distributions of Y ’s do not depend on (µ, τ2)
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8.3 The hierarchical normal model 133

µ, τ2

σ2

Y 1 Y 2 · · · Y m−1 Y m

θ1 θ2 · · · θm−1 θm

Fig. 8.3. A graphical representation of the basic hierarchical normal model.

8.3.1 Posterior inference

The unknown quantities in our system include the group-specific means
{θ1, . . . , θm}, the within-group sampling variability σ2 and the mean and vari-
ance (µ, τ2) of the population of group-specific means. Joint posterior infer-
ence for these parameters can be made by constructing a Gibbs sampler which
approximates the posterior distribution p(θ1, . . . , θm, µ, τ

2, σ2|y1, . . . ,ym).
The Gibbs sampler proceeds by iteratively sampling each parameter from

its full conditional distribution. Deriving the full conditional distributions in
this highly parameterized system may seem like a daunting task, but it turns
out that all of the necessary technical details have been covered in Chapters
5 and 6. All that is required of us at this point is that we recognize certain
analogies between the current model and the univariate normal model. Useful
for this will be the following factorization:

p(θ1, . . . , θm, µ, τ
2, σ2|y1, . . . ,ym)

∝ p(µ, τ2, σ2)× p(θ1, . . . , θm|µ, τ2, σ2)× p(y1, . . . ,ym|θ1, . . . , θm, µ, τ2, σ2)

= p(µ)p(τ2)p(σ2)





m∏

j=1

p(θj |µ, τ2)









m∏

j=1

nj∏

i=1

p(yi,j |θj , σ2)



 . (8.3)

The term in the second pair of brackets is the result of an important condi-
tional independence feature of our model. Conditionally on {θ1, . . ., θm, µ, τ2,
σ2}, the random variables Y1,j , . . . , Ynj ,j are independent with a distribution
that depends only on θj and σ

2 and not on µ or τ2. It is helpful to think about
this fact in terms of the diagram in Figure 8.3: The existence of a path from
(µ, τ2) to each Y j indicates that while (µ, τ

2) provides information about Y j ,
it only does so indirectly through θj , which separates the two quantities in
the graph.

Full conditional distributions of µ and τ2

As a function of µ and τ2, the term in Equation 8.3 is proportional to

p(µ)p(τ2)

m∏

j=1

p(θj |µ, τ),

*From Hoff (2009), A First Course in Bayesian Statistical Methods, Springer
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• Notation: Yi = (Yj1, . . . , Yjnj
), j = 1, . . . ,m

• Y = (Y1, . . . , Ym) and θ = (θ1, . . . , θm)

• Joint posterior distribution

π(θ, µ, τ2, σ2|Y ) ∝ π(µ, τ2, σ2)g(θ|µ, τ2, σ2)f(Y |θ, µ, τ2, σ2)

∝ π(µ)π(τ2)π(σ2)





m∏

j=1

g(θj|µ, τ2)









m∏

j=1

nj∏

i=1

f(yji|θj, σ2)





• Full conditionals for µ and τ2: π(µ, τ2|θ, σ2, Y ) ∝ π(µ)π(τ2)
∏m

j=1 g(θj|µ, τ2)

• π(µ|θ, τ2, σ2, Y ) ∝ π(µ)
∏m

j=1 g(θj|µ, τ2)

• π(τ2|θ, µ, σ2, Y ) ∝ π(τ2)
∏m

j=1 g(θj|µ, τ2)

37



HIERARCHICAL MODELS

• The two full conditionals look very familiar!

– Sample (θ, . . . , θm) from N (µ, τ2)

– µ ∼ N (µ0, γ2
0)

– τ2 ∼ IG(η0/2, η0τ2
0/2)

• µ|θ, τ2, Y ∼ N
(
mθ/τ2 + µ0/γ2

0

m/τ2 +1/γ2
0

,
[
m/τ2 +1/γ2

0

]−1
)

• τ2|θ, µ, Y ∼ IG

(
η0 +m

2
,
η0τ2

0 +
∑m

j=1(θj − µ)2

2

)

• Here θ =
m∑

j=1

θj/m
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• Regarding θ, we can compute the full conditional for each θj, as dependent on
µ, τ2, σ2, Yj since it is independent from the other θk’s and the data from other
groups

• g(θj|µ, τ2, σ2, Yj) ∝ g(θj|µ, τ2)
∏nj

i=1 f(yji|θj, σ2), j = 1, . . . ,m

• We have the product of Gaussian densities (already done, although in a simpler
case)

• ⇒ θj|µ, τ2, σ2, Yj ∼ N
(
njyj/σ

2 +1/τ2

nj/σ2 +1/τ2
,
[
nj/σ

2 +1/τ2
]−1
)

• Here yj =

nj∑

i=1

yji/nj
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• Full conditional of σ2

π(σ2|θ, Y ) ∝ π(σ2)





m∏

j=1

g(θj|µ, τ2)









m∏

j=1

nj∏

i=1

f(yji|θj, σ2)





∝ (σ2)−ν0/2+1e−ν0σ2
0/(2σ

2) · (σ2)
−
∑m

j=1
nj/2e

−
∑m

j=1

∑
i=1nj(yij−θ2

j )/(2σ
2)

• ⇒ σ2|θ, Y ∼ IG


(ν0 +

m∑

j=1

nj)/2, (ν0σ
2
0 +

m∑

j=1

nj∑

i=1

(yij − θj)
2)/2




• We use the Gibbs algorithm to get a sample from the posterior distribution since all
the conditional distributions are properly specified
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