HIERARCHICAL MODELS

Consider the number of car accidents over 30 years by a driver (M) in Milano and
one (R) in Roma

We can consider two persons, randomly selected or not, or the average of (a subset
of) the population in the two cities but then we round up to an integer

The event is rare and takes only integer values = Poisson distribution

)\.T
X~PAN) =-P(X=2)= —Ie_’\
x

x €7

How should we model our data and prior for M and R?

We should think if the behaviour of the two drivers is the same, completely different
or there are similarities

How do we transform those situations into a statistical model?
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HIERARCHICAL MODELS

ny and ng number of accidents for M and R
Ay and Ar parameters for Poisson distribution for nj; and ng

Equal: If the two drivers are behaving in the same way, we model the data indepen-
dently but with a common )\, with gamma prior G(«, 8)

— = w(Mna, ng) oc A™e A \tremA L \aTlgA

- = Mna,nr ~ G(a+ny + ng, 8+ 2)
Completely different: If the two drivers are behaving in a completely different way,

we model the data not only independently but also with different \’s, and independent
gamma priors

— ny ~ P(Aw) and Ay ~ G(anr, Bar) = Anar ~ G(or + nar, By + 1)
— nr ~ P(Ar) and Ag ~ G(ar, Br) = Alng ~ G(agr + nr,Br+ 1)

25



HIERARCHICAL MODELS

Similar: If the two drivers are behaving in a similar way, we model the data indepen-
dently, with different \’s, but drawn from the same exponential (for simplicity) prior,
dependent on a parameter 6

— = 7(Aum, Ar|nar, ng, 0) oc Niye M Nire =M. Ge Y . e b

- = Aunm,ngr, 0 ~ G(ny + 1,0 4+ 1) and Ag|ny,ng, 0 ~ G(ng + 1,0 + 1)
Two independent gamma posteriors for known 6 but what about if unknown?
We could consider a gamma prior 6 ~ G(a, b)
= w(Au, AR, O|nar, nr) x Xﬁ’e_w : )\%Re_AR e Ml . ge Ml . ga—le—00

Gibbs sampling:
— M| AR, 0,npr,nr ~ GO +ny+ 1,04 1)
— Ag|Aum, 0,na,nr ~ GO +np+ 1,0+ 1)
— 0|2, Ary v, nr ~ Gla+ 2,04+ Ay + Ar)
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e We have to integrate out 6 if we are just interested in the full conditionals of each A
given the other

7T()\M7)\R‘nManR) /W()\M,)\R,9|7’LM,TLR)d9

0% )\?\}IG_AM)\%RG_AR/9a+16_(b+>\M+>\R)0d9

)\%”e_’\”f)\%Re_”\R
(b+ A+ Ap)ot?

e = We can use Gibbs sampling with Metropolis steps within
e Au

(b4 Ay + Ar)at?
A=A

(b + Ay + Ar)ot?

- 7T()\]\i|)\R) np, TLR) X

— 7w(Ar|AM, nar,MR) X

e As proposal distributions we could use G(ny;+1,1) and G(ng+1, 1), respectively
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Empirical Bayes is a practical, although not properly Bayesian, alternative to the
choice of a prior on 6

The idea is to find the value of & maximising the probability of the data and plug it
into the formulas

The critical aspect, from a strict Bayesian viewpoint, is that data are used twice, first
to find a value of 8 and then computing the posterior distribution: priors should be
independent from the data!

We have to look for § = arg maxg f(ns, nr|0)

With the same computations as before for 6 known, we plug in 0 R
= >\M|nM7nR79 ~ g(nM + 170 + 1) and >\R|nM7nR70 ~ g(nR + 179 —I_ 1)
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, 21ogh(nu,nr,0)
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o
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HIERARCHICAL MODELS

/f(nM, nr| A, AR)T (A, AR|0)dAydAR
o / Are= M \ie™ . ge= M0 geMOd N rd A g

x 6 / Npyem (B DXngy / Nprem O+ DAg g

g2l +1) T(ng+1)

X U0 1)t (4 1)natt
92
x (0 _|_ 1)nM+nR+2
— h’(nManRae)
_ 2 ny+ngp+?2
0 0+ 1
~ 2
=0f)= —F—
na + R
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Is § = —2— surprising? Not much!

ny+ng

We are considering an event described by a Poisson distribution with parameter A
For X ~ P(\) we know that E(X) = A

For A ~ £(0) we know that E(\) = 1/6

Since we use § = —2—, we can think of X somehow approximated (with some

ny+neg
mathematical imprecision) by ”MTJ“”R which is very reasonable under our assump-
tions
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In ltaly every year students in some grades are taking tests on their knowledge about
ltalian language and Mathematics. The results of the tests could be affected by the
school attended by the students so that it is reasonable to assume that the outcome
for students of the same school are modelled by the same distribution while there
should be a difference between schools.

The same model could be used for batches of the same item but produced in different
factories or survival times of patients in different hospitals

We suppose that we observe data from n different groups, with n;, ¢ = 1,...,n,
elements in each of them

Therefore the dataare Y;;,: =1,...,nand j; = 1,...,n,, although we will use Y;;
for simplicity

Notation: Y; = {Yi1,...,Yin}, ¢ = 1,...,n data for i-th group

Hierarchical models related to the notion of exchangeability, i.e. P(X1,...,X,) in-
variant w.r.t. permutations (but we will not discuss it)
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Each group has its own distribution with a common parameter, i.e., the density of Y;;
IS f(yij|)\i),z' =1,....n,7=1,...,n;

This assumption implies a common behaviour within the group

We assume that the functional form of f is not changing between groups (but it
could)

All the parameters \;’s are supposed different (although sometimes some groups
might have the same parameter)

This assumption implies that the behaviour changes between groups

All \;’s come from the same distribution, i.e. ¢(\;|0), where 0 is a parameter in
common

This assumption implies that the behaviour of the groups, although different, is actu-
ally similar

As before, a prior could be chosen for 6 or a value could be plugged in, using, e.g.,
Empirical Bayes
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{yu, “ e >y2m|>‘l} ~/ Ild f(y|>\z);'5 — ]., N 1
Within group sampling variability

{1,y At ~idd. g(A|6)
Between groups sampling variability

0 ~ w(0|w)
Prior distribution with hyperparameter w

Sometimes both f(y|A;) and g(\|@) are called sampling distributions

A popular model to describe heterogeneity of means across several populations is a
hierarchical Normal model where both sampling distributions are Gaussian
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Observations in group j,5 = 1,...,m: Y;; ~ N (6;,02) (Within group variability)
Mean of group j,5 = 1,...,m: 8; ~ N (u, 72) (Between groups variability)

Independent priors on (u, 72, 02) : ()7 (1?)7(c?)
— o~ N(po,73)
- 7%~ ZIG(10/2, 1075 /2)
- 0?2 ~IG(v/2,v0%/2)

Note that we assume the same variance for all the observations, while the mean is
the same within a group but it changes between groups

As seen graphically in the next slide, (i, 72) provide information on Y’s but, once 6
is known, the distributions of Y’'s do not depend on (p, 72)
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/ \
\/

*From Hoff (2009), A First Course in Bayesian Statistical Methods, Springer
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HIERARCHICAL MODELS
Notation: ¥; = (Yj1,..., YY), 5 =1,...,m
Y:(Yl,...,ym) and 0 = (91,...,9m)

Joint posterior distribution
w(0, 1, 7%, 0°Y) o< w(p,7%,0%)g(0lu, 7%, 0°) (Y0, u, 72, 0°)

o m(p)m(r?)m(o?) { 11 9sle, 72)} { 11 H £ (y;il6;, 02)}

j=1 j=1i=1
Full conditionals for p and 72: w(u, 72|10, 02,Y) oc w(p)7(72) [T~ 9(0;|u, 72)
(0, 72,02, Y) o (1) [0y 9611, 72)

m(7210, 1,02, Y) oc w(m2) [}, 9(05]p, 72)

37



HIERARCHICAL MODELS

The two full conditionals look very familiar!

— Sample (0. ..

,Om) from N (p, 72)

— p~N(po,73)
— 72 ~ZG(no/2,m078/2)

m0/72 + p10/75

:U‘|077—27Y NN(

2|0, 1, Y ~IG (

2 211
m/72 + 1/73 L/ 1/ )

no + m no7g + 2?21(@ — ,U)Q)
2 2

Here 6 =) 6;/m

=1
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Regarding 6, we can compute the full conditional for each 6;, as dependent on
u,7%,02,Y; since it is independent from the other 6,’s and the data from other
groups

9(0jlp, 72,02, Y;) o< g(05lp, 72) [[i21 f(y;il05,0%), 5 = 1,...,m

We have the product of Gaussian densities (already done, although in a simpler
case)

njgj/(;2—|— 1/’7‘2
n;/o? 4+ 1/712 ’

:>0j|u,72,02,§/}wj\/( [nj/O'Q—I—l/TQ]_l)

n;
Here gj = Z yji/nj
=1
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e Full conditional of 52

(0210,Y) o 702 4 [[ 9l Y 4 TTT] £Cwsilts 02

N G B C N R DL R DD DLt lC

() :>0'2|Q,YNIQ (Vo—|—an)/2,(VOO'8+ZZ(yij_Qj)Q)/Q

e We use the Gibbs algorithm to get a sample from the posterior distribution since all
the conditional distributions are properly specified
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